Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/56669
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChanisa Thonusinen_US
dc.contributor.authorHeidi B. IglayRegeren_US
dc.contributor.authorTanu Sonien_US
dc.contributor.authorAmy E. Rothbergen_US
dc.contributor.authorCharles F. Buranten_US
dc.contributor.authorCharles R. Evansen_US
dc.date.accessioned2018-09-05T03:28:42Z-
dc.date.available2018-09-05T03:28:42Z-
dc.date.issued2017-11-10en_US
dc.identifier.issn18733778en_US
dc.identifier.issn00219673en_US
dc.identifier.other2-s2.0-85029488380en_US
dc.identifier.other10.1016/j.chroma.2017.09.023en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85029488380&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/56669-
dc.description.abstract© 2017 Elsevier B.V. In recent years, mass spectrometry-based metabolomics has increasingly been applied to large-scale epidemiological studies of human subjects. However, the successful use of metabolomics in this context is subject to the challenge of detecting biologically significant effects despite substantial intensity drift that often occurs when data are acquired over a long period or in multiple batches. Numerous computational strategies and software tools have been developed to aid in correcting for intensity drift in metabolomics data, but most of these techniques are implemented using command-line driven software and custom scripts which are not accessible to all end users of metabolomics data. Further, it has not yet become routine practice to assess the quantitative accuracy of drift correction against techniques which enable true absolute quantitation such as isotope dilution mass spectrometry. We developed an Excel-based tool, MetaboDrift, to visually evaluate and correct for intensity drift in a multi-batch liquid chromatography – mass spectrometry (LC–MS) metabolomics dataset. The tool enables drift correction based on either quality control (QC) samples analyzed throughout the batches or using QC-sample independent methods. We applied MetaboDrift to an original set of clinical metabolomics data from a mixed-meal tolerance test (MMTT). The performance of the method was evaluated for multiple classes of metabolites by comparison with normalization using isotope-labeled internal standards. QC sample-based intensity drift correction significantly improved correlation with IS-normalized data, and resulted in detection of additional metabolites with significant physiological response to the MMTT. The relative merits of different QC-sample curve fitting strategies are discussed in the context of batch size and drift pattern complexity. Our drift correction tool offers a practical, simplified approach to drift correction and batch combination in large metabolomics studies.en_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.subjectMedicineen_US
dc.titleEvaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics dataen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Chromatography Aen_US
article.volume1523en_US
article.stream.affiliationsUniversity of Michigan, Ann Arboren_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.