Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/56334
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXue Gongen_US
dc.contributor.authorSongsaken_US
dc.contributor.authorSriboonchittaen_US
dc.contributor.authorSiwarat Kusonen_US
dc.date.accessioned2018-09-05T03:15:05Z-
dc.date.available2018-09-05T03:15:05Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn19936125en_US
dc.identifier.issn18185800en_US
dc.identifier.other2-s2.0-85005950760en_US
dc.identifier.other10.3923/sscience.2016.4617.4621en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85005950760&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/56334-
dc.description.abstract© Medwell Journals, 2016. The ARIMA Model is good for tourism demand forecasting when the uncertainty is low. However, when several uncertainty events happened, such as Chinese holidays, political turmoil and structural changes in our study, the model reacts very weakly. After comparing the out-of-sample forecast performances of ARIMA and Seasonal ARIMA (SARIMA) Models, we suggest that the SARIMA Model produce a more stable forecast especially when the structural change occurs and high uncertainty appears. We recommend the policy makers and relevant travel decision section to use SARIMA method to conduct the tourist forecasting.en_US
dc.subjectSocial Sciencesen_US
dc.titleForecasting the Chinese tourist arrivals to Thailand the time series approachen_US
dc.typeJournalen_US
article.title.sourcetitleSocial Sciences (Pakistan)en_US
article.volume11en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsMaejo Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.