Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55986
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuwicha Imnangen_US
dc.contributor.authorSuthep Suantaien_US
dc.date.accessioned2018-09-05T03:07:05Z-
dc.date.available2018-09-05T03:07:05Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn13147552en_US
dc.identifier.issn1312885Xen_US
dc.identifier.other2-s2.0-85003510900en_US
dc.identifier.other10.12988/ams.2016.66198en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85003510900&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55986-
dc.description.abstract© 2016 Suwicha Imnang and Suthep Suantai. We present the strong convergence theorems for the viscosity iterative scheme for finding a common element of the solution set of the system of general variational inequalities for two arbitrary nonlinear mappings and the fixed point set of a nonexpansive mapping in real 2 uniformly smooth and uniformly convex Banach spaces. Furthermore,we apply our main result with the problem of approximating a zero point of accretive operators and a fixed point of strictly pseudocontractive mappings in Banach spaces. The main results presented in this paper improve and extend some results in the literature.en_US
dc.subjectMathematicsen_US
dc.titleStrong convergence of a viscosity iterative algorithm in banach spaces with applicationsen_US
dc.typeJournalen_US
article.title.sourcetitleApplied Mathematical Sciencesen_US
article.volume10en_US
article.stream.affiliationsThaksin Universityen_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.