Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55986
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suwicha Imnang | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-05T03:07:05Z | - |
dc.date.available | 2018-09-05T03:07:05Z | - |
dc.date.issued | 2016-01-01 | en_US |
dc.identifier.issn | 13147552 | en_US |
dc.identifier.issn | 1312885X | en_US |
dc.identifier.other | 2-s2.0-85003510900 | en_US |
dc.identifier.other | 10.12988/ams.2016.66198 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85003510900&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/55986 | - |
dc.description.abstract | © 2016 Suwicha Imnang and Suthep Suantai. We present the strong convergence theorems for the viscosity iterative scheme for finding a common element of the solution set of the system of general variational inequalities for two arbitrary nonlinear mappings and the fixed point set of a nonexpansive mapping in real 2 uniformly smooth and uniformly convex Banach spaces. Furthermore,we apply our main result with the problem of approximating a zero point of accretive operators and a fixed point of strictly pseudocontractive mappings in Banach spaces. The main results presented in this paper improve and extend some results in the literature. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Strong convergence of a viscosity iterative algorithm in banach spaces with applications | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Applied Mathematical Sciences | en_US |
article.volume | 10 | en_US |
article.stream.affiliations | Thaksin University | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.