Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55953
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bernd Billhardt | en_US |
dc.contributor.author | Ekkachai Laysirikul | en_US |
dc.contributor.author | Kritsada Sangkhanan | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.contributor.author | Worachead Sommanee | en_US |
dc.date.accessioned | 2018-09-05T03:06:30Z | - |
dc.date.available | 2018-09-05T03:06:30Z | - |
dc.date.issued | 2016-02-01 | en_US |
dc.identifier.issn | 00371912 | en_US |
dc.identifier.other | 2-s2.0-84954369625 | en_US |
dc.identifier.other | 10.1007/s00233-015-9732-2 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84954369625&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/55953 | - |
dc.description.abstract | © 2015, Springer Science+Business Media New York. Let ΠL1denote a direct power of L1, the two-element left zero semigroup with identity adjoined. We prove that the semigroups in the title are embeddable into transformation semigroups which naturally generalize the Vagner one-point completion of the symmetric inverse semigroup. We give some examples and show that our representation provides a convenient way to construct E-unitary covers and embeddings of E-unitary such semigroups into semidirect products of ΠL1-embeddable bands by groups. | en_US |
dc.subject | Mathematics | en_US |
dc.title | On R-unipotent semigroups with ΠL<sup>1</sup>-embeddable band of idempotents | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Semigroup Forum | en_US |
article.volume | 92 | en_US |
article.stream.affiliations | Universitat Kassel | en_US |
article.stream.affiliations | Naresuan University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.