Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55951
Full metadata record
DC FieldValueLanguage
dc.contributor.authorA. Kabánen_US
dc.contributor.authorJ. Bootkrajangen_US
dc.contributor.authorR. J. Durranten_US
dc.date.accessioned2018-09-05T03:06:27Z-
dc.date.available2018-09-05T03:06:27Z-
dc.date.issued2016-06-01en_US
dc.identifier.issn15309304en_US
dc.identifier.issn10636560en_US
dc.identifier.other2-s2.0-84974783455en_US
dc.identifier.other10.1162/EVCO_a_00150en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84974783455&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55951-
dc.description.abstract© 2016 by the Massachusetts Institute of Technology. Estimations of distribution algorithms (EDAs) are a major branch of evolutionary algorithms (EA) with some unique advantages in principle. They are able to take advantage of correlation structure to drive the search more efficiently, and they are able to provide insights about the structure of the search space. However, model building in high dimensions is extremely challenging, and as a result existing EDAs may become less attractive in large-scale problems because of the associated large computational requirements. Large-scale continuous global optimisation is key to many modernday real-world problems. Scaling up EAs to large-scale problems has become one of the biggest challenges of the field. This paper pins down some fundamental roots of the problem and makes a start at developing a new and generic framework to yield effective and efficient EDA-type algorithms for large-scale continuous global optimisation problems. Our concept is to introduce an ensemble of random projections to low dimensions of the set of fittest search points as a basis for developing a new and generic divide-and-conquer methodology. Our ideas are rooted in the theory of random projections developed in theoretical computer science, and in developing and analysing our framework we exploit some recent results in nonasymptotic random matrix theory.en_US
dc.subjectMathematicsen_US
dc.titleToward large-scale continuous EDA: A random matrix theory perspectiveen_US
dc.typeJournalen_US
article.title.sourcetitleEvolutionary Computationen_US
article.volume24en_US
article.stream.affiliationsUniversity of Birminghamen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Waikatoen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.