Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhanittha Promluangen_US
dc.contributor.authorPongrus Phuangphooen_US
dc.contributor.authorPoom Kumamen_US
dc.date.accessioned2018-09-05T02:58:29Z-
dc.date.available2018-09-05T02:58:29Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn19980159en_US
dc.identifier.other2-s2.0-84964066867en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964066867&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55613-
dc.description.abstract© 2016, North Atlantic University Union. All rights reserved. In this paper, we propose a projection method for solving nonlinear complementarity problems and a zero point of maximal monotone operators. Strong convergence theorems are established for solving the common solutions of complementarity problems and a zero point of maximal monotone operators together with a system of generalized equilibrium, variational inequality and fixed point problems in a uniformly smooth and 2-uniformly convex real Banach space. Moreover, we also apply the result to Hilbert spaces.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleThe common solutions of complementarity problems and a zero point of maximal monotone operators by using the hybrid projection methoden_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Mathematics and Computers in Simulationen_US
article.volume10en_US
article.stream.affiliationsKing Mongkuts University of Technology Thonburien_US
article.stream.affiliationsBansomdejchaopraya Rajabhat Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsBurapha Universityen_US
article.stream.affiliationsSrinakharinwirot Universityen_US
article.stream.affiliationsGyeongsang National Universityen_US
article.stream.affiliationsKyushu Institute of Technologyen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.