Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55498
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suwannee Phitakwinai | en_US |
dc.contributor.author | Sansanee Auephanwiriyakul | en_US |
dc.contributor.author | Nipon Theera-Umpon | en_US |
dc.date.accessioned | 2018-09-05T02:57:14Z | - |
dc.date.available | 2018-09-05T02:57:14Z | - |
dc.date.issued | 2016-10-31 | en_US |
dc.identifier.other | 2-s2.0-85007196118 | en_US |
dc.identifier.other | 10.1109/IJCNN.2016.7727243 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85007196118&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/55498 | - |
dc.description.abstract | © 2016 IEEE. The feed forward multilayer perceptron (MLP) with the Cuckoo search (CS) algorithm, called CS-MLP is implemented to predict 7-hours-ahead water level of the Ping river at the downtown area of Chiang Mai, Thailand. The CS-MLP model prediction performance is compared with the regular multilayer perceptron (MLP) and the results from the previous work. The CS-MLP is the best among them with the mean absolute error on the blind test data set of 6.836 cm. | en_US |
dc.subject | Computer Science | en_US |
dc.title | Multilayer perceptron with Cuckoo search in water level prediction for flood forecasting | en_US |
dc.type | Conference Proceeding | en_US |
article.title.sourcetitle | Proceedings of the International Joint Conference on Neural Networks | en_US |
article.volume | 2016-October | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.