Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55498
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuwannee Phitakwinaien_US
dc.contributor.authorSansanee Auephanwiriyakulen_US
dc.contributor.authorNipon Theera-Umponen_US
dc.date.accessioned2018-09-05T02:57:14Z-
dc.date.available2018-09-05T02:57:14Z-
dc.date.issued2016-10-31en_US
dc.identifier.other2-s2.0-85007196118en_US
dc.identifier.other10.1109/IJCNN.2016.7727243en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85007196118&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55498-
dc.description.abstract© 2016 IEEE. The feed forward multilayer perceptron (MLP) with the Cuckoo search (CS) algorithm, called CS-MLP is implemented to predict 7-hours-ahead water level of the Ping river at the downtown area of Chiang Mai, Thailand. The CS-MLP model prediction performance is compared with the regular multilayer perceptron (MLP) and the results from the previous work. The CS-MLP is the best among them with the mean absolute error on the blind test data set of 6.836 cm.en_US
dc.subjectComputer Scienceen_US
dc.titleMultilayer perceptron with Cuckoo search in water level prediction for flood forecastingen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleProceedings of the International Joint Conference on Neural Networksen_US
article.volume2016-Octoberen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.