Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSamir Karaaen_US
dc.contributor.authorAmiya K. Panien_US
dc.date.accessioned2018-09-04T10:19:53Z-
dc.date.available2018-09-04T10:19:53Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn17055105en_US
dc.identifier.other2-s2.0-84929903856en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929903856&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54661-
dc.description.abstract© 2015 Institute for Scientific Computing and Information. In this paper, both semidiscrete and completely discrete finite volume element methods (FVEMs) are analyzed for approximating solutions of a class of linear hyperbolic integro-differential equations in a two-dimensional convex polygonal domain. The effect of numerical quadrature is also examined. In the semidiscrete case, optimal error estimates in L<sup>∞</sup>(L<sup>2</sup>) and L<sup>∞</sup>(H<sup>1</sup>) norms are shown to hold with minimal regularity assumptions on the initial data, whereas quasi-optimal estimate is derived in L<sup>∞</sup>(L<sup>∞</sup>) norm under higher regularity on the data. Based on a second order explicit method in time, a completely discrete scheme is examined and optimal error estimates are established with a mild condition on the space and time discretizing parameters. Finally, some numerical experiments are conducted which confirm the theoretical order of convergence.en_US
dc.subjectMathematicsen_US
dc.titleA priori error estimates for finite volume element approximations to second order linear hyperbolic integro-differential equationsen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Numerical Analysis and Modelingen_US
article.volume12en_US
article.stream.affiliationsSultan Qaboos Universityen_US
article.stream.affiliationsIndian Institute of Technology, Bombayen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.