Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54643
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWorachead Sommaneeen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T10:19:12Z-
dc.date.available2018-09-04T10:19:12Z-
dc.date.issued2015-11-25en_US
dc.identifier.issn00025240en_US
dc.identifier.other2-s2.0-84942191518en_US
dc.identifier.other10.1007/s00012-015-0354-zen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84942191518&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54643-
dc.description.abstract© 2015, Springer Basel. Let X be a chain and OT(X) the full order-preserving transformation semigroup on X. Let Y be a fixed nonempty subset of X and let OT(X, Y) be the subsemigroup of OT(X) of all order-preserving transformations with ranges contained in Y. In this paper, we investigate the order-preserving transformation semigroupOF(X,Y)={α∈OT(X,Y):Xα=Yα}.Here, we characterize when an element of OF(X, Y) is regular and describe Green’s relations in OF(X, Y). Moreover, we give a simpler description of Green’s relations, characterize the ideals of OF(X, Y) when Y is a finite subset of X, and apply these results to prove that OF(X, Y) is idempotent generated.en_US
dc.subjectMathematicsen_US
dc.titleOrder-preserving transformations with restricted range: regularity, Green’s relations, and idealsen_US
dc.typeJournalen_US
article.title.sourcetitleAlgebra Universalisen_US
article.volume74en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.