Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54643
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Worachead Sommanee | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-04T10:19:12Z | - |
dc.date.available | 2018-09-04T10:19:12Z | - |
dc.date.issued | 2015-11-25 | en_US |
dc.identifier.issn | 00025240 | en_US |
dc.identifier.other | 2-s2.0-84942191518 | en_US |
dc.identifier.other | 10.1007/s00012-015-0354-z | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84942191518&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/54643 | - |
dc.description.abstract | © 2015, Springer Basel. Let X be a chain and OT(X) the full order-preserving transformation semigroup on X. Let Y be a fixed nonempty subset of X and let OT(X, Y) be the subsemigroup of OT(X) of all order-preserving transformations with ranges contained in Y. In this paper, we investigate the order-preserving transformation semigroupOF(X,Y)={α∈OT(X,Y):Xα=Yα}.Here, we characterize when an element of OF(X, Y) is regular and describe Green’s relations in OF(X, Y). Moreover, we give a simpler description of Green’s relations, characterize the ideals of OF(X, Y) when Y is a finite subset of X, and apply these results to prove that OF(X, Y) is idempotent generated. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Order-preserving transformations with restricted range: regularity, Green’s relations, and ideals | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Algebra Universalis | en_US |
article.volume | 74 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.