Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54628
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prasit Cholamjiak | en_US |
dc.contributor.author | Watcharaporn Cholamjiak | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-04T10:19:02Z | - |
dc.date.available | 2018-09-04T10:19:02Z | - |
dc.date.issued | 2015-12-22 | en_US |
dc.identifier.issn | 1029242X | en_US |
dc.identifier.issn | 10255834 | en_US |
dc.identifier.other | 2-s2.0-84937574501 | en_US |
dc.identifier.other | 10.1186/s13660-015-0739-8 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84937574501&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/54628 | - |
dc.description.abstract | © 2015, Cholamjiak et al. We study the regularization method for solving the variational inclusion problem of the sum of two monotone operators in Hilbert spaces. The strong convergence theorem is then established under some relaxed conditions which mainly improves and recovers that of Qin et al. (Fixed Point Theory Appl. 2014:75, 2014). We also apply our main result to the convex minimization problem, the fixed point problem and the variational inequality problem. Finally we provide numerical examples for supporting the main result. | en_US |
dc.subject | Mathematics | en_US |
dc.title | A modified regularization method for finding zeros of monotone operators in Hilbert spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Inequalities and Applications | en_US |
article.volume | 2015 | en_US |
article.stream.affiliations | University of Phayao | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.