Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54626
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAttapol Kaewkhaoen_US
dc.contributor.authorBancha Panyanaken_US
dc.contributor.authorSuthep Suantaien_US
dc.date.accessioned2018-09-04T10:19:01Z-
dc.date.available2018-09-04T10:19:01Z-
dc.date.issued2015-12-25en_US
dc.identifier.issn1029242Xen_US
dc.identifier.issn10255834en_US
dc.identifier.other2-s2.0-84942100701en_US
dc.identifier.other10.1186/s13660-015-0801-6en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84942100701&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54626-
dc.description.abstract© 2015, Kaewkhao et al. A complete CAT(0) space X is said to have the nice projection property (property N for short) if its metric projection onto a geodesic segment preserves points on each geodesic segment, that is, for any geodesic segment L in X and x,y∈X, m∈[x,y] implies (Formula presented.), where P<inf>L</inf> denotes the metric projection from X onto L. In this paper, we prove a strong convergence theorem of a two-step viscosity iteration method for nonexpansive mappings in CAT(0) spaces without the condition on the property N. Our result gives an affirmative answer to a problem raised by Piatek (Numer. Funct. Anal. Optim. 34:1245-1264, 2013).en_US
dc.subjectMathematicsen_US
dc.titleViscosity iteration method in CAT(0) spaces without the nice projection propertyen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Inequalities and Applicationsen_US
article.volume2015en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.