Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54265
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNarabhats Rannuragsen_US
dc.contributor.authorParawee Rattanakiten_US
dc.contributor.authorTharinee Wongananen_US
dc.contributor.authorSuphachoke Upaleeen_US
dc.contributor.authorSaisunee Liawruangrathen_US
dc.date.accessioned2018-09-04T10:10:20Z-
dc.date.available2018-09-04T10:10:20Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn15256030en_US
dc.identifier.issn10739149en_US
dc.identifier.other2-s2.0-84928551521en_US
dc.identifier.other10.1080/10739149.2014.984198en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84928551521&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54265-
dc.description.abstractCopyright © Taylor & Francis Group, LLC. Modification of a minicomputer numerical controller with a low cost diode laser for fabrication of polymethyl methacrylate chips has been demonstrated. The maximum power of the diode laser was 5 W at 808 nm. The scanning speed was 1.0-10.0 mm s<sup>-1</sup> by the movement of x and y stages. The patterns of microchannels on the chip were designed using drawing software and then applied to software that controlled the operation of the controller. The parameters that affected the channel depth, width, and smoothness were studied by varying the laser power and speed of polymethyl methacrylate sheets with surface area of 4.0 × 6.0 cm<sup>2</sup> and thickness of 0.1 cm. The optimum conditions were used to fabricate microchannels on each sheet giving different depths and widths over the range of 74 μm to 554 μm and 147 μm to 393 μm, respectively. The most appropriate conditions for polymethyl methacrylate chip fabrication were 5 W and 3 mm s<sup>-1</sup> for the laser diode power and the speed, respectively. The optimal dimensions of the microchannel on the polymethyl methacrylate sheet were 226 μm in width and 202 μm in depth based on sensitivity, reproducibility, and low background signals. The microchannels were sealed with a polymethyl methacrylate cover plate by thermal bonding. The resulting chips were tested for iron(III) determination in water based on microreverse flow analysis.en_US
dc.subjectChemical Engineeringen_US
dc.subjectEnvironmental Scienceen_US
dc.subjectPhysics and Astronomyen_US
dc.titleA novel fabrication procedure for the preparation of polymethyl methacrylate lab-on-a-chip substratesen_US
dc.typeJournalen_US
article.title.sourcetitleInstrumentation Science and Technologyen_US
article.volume43en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsWalailak Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.