Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53700
Full metadata record
DC FieldValueLanguage
dc.contributor.authorS. Buadaen_US
dc.contributor.authorD. Samanaen_US
dc.contributor.authorV. Longanien_US
dc.date.accessioned2018-09-04T09:55:53Z-
dc.date.available2018-09-04T09:55:53Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn11268042en_US
dc.identifier.other2-s2.0-84923085360en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923085360&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53700-
dc.description.abstract© 2015, Forum-Editrice Universitaria Udinese SRL. All rigths reserved. The k-colored tripartite Ramsey numbers rt(G; k) is the smallest positive integer n such that any k-coloring of lines of a complete tripartite graph Kn,n,nthere always exists a monochromatic subgraph isomorphic to G. When G is C4it is known, but unpublished in a journal, that rt(C4; 2) = 3. In this paper we simplify the proof of rt(C4; 2) = 3 and show the new result that rt(C4; 3) = 7.en_US
dc.subjectMathematicsen_US
dc.titleThe tripartite Ramsey numbers r<inf>t</inf>(C<inf>4</inf>;2) and r<inf>t</inf>(C<inf>4</inf>;3)en_US
dc.typeJournalen_US
article.title.sourcetitleItalian Journal of Pure and Applied Mathematicsen_US
article.stream.affiliationsNakhon Sawan Rajabhat Universityen_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
article.stream.affiliationsKing Mongkut's Institute of Technology Ladkrabangen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.