Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/53700
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | S. Buada | en_US |
dc.contributor.author | D. Samana | en_US |
dc.contributor.author | V. Longani | en_US |
dc.date.accessioned | 2018-09-04T09:55:53Z | - |
dc.date.available | 2018-09-04T09:55:53Z | - |
dc.date.issued | 2014-01-01 | en_US |
dc.identifier.issn | 11268042 | en_US |
dc.identifier.other | 2-s2.0-84923085360 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923085360&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/53700 | - |
dc.description.abstract | © 2015, Forum-Editrice Universitaria Udinese SRL. All rigths reserved. The k-colored tripartite Ramsey numbers rt(G; k) is the smallest positive integer n such that any k-coloring of lines of a complete tripartite graph Kn,n,nthere always exists a monochromatic subgraph isomorphic to G. When G is C4it is known, but unpublished in a journal, that rt(C4; 2) = 3. In this paper we simplify the proof of rt(C4; 2) = 3 and show the new result that rt(C4; 3) = 7. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The tripartite Ramsey numbers r<inf>t</inf>(C<inf>4</inf>;2) and r<inf>t</inf>(C<inf>4</inf>;3) | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Italian Journal of Pure and Applied Mathematics | en_US |
article.stream.affiliations | Nakhon Sawan Rajabhat University | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
article.stream.affiliations | King Mongkut's Institute of Technology Ladkrabang | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.