Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/53679
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kritsada Sangkhanan | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-04T09:55:15Z | - |
dc.date.available | 2018-09-04T09:55:15Z | - |
dc.date.issued | 2014-01-01 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-84896301309 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84896301309&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/53679 | - |
dc.description.abstract | Let V be any vector space and P(V) the set of all partial linear transformations defined on V, that is, all linear transformations α: S → T where S; T are subspaces of V. Then P(V) is a semigroup under composition. Let W be a subspace of V. We define PT(V;W) = {α ∈ P(V): Vα ⊆ W}. So PT(V,W) is a subsemigroup of P(V). In this paper, we present the largest regular subsemigroup and determine Green's relations on PT(V;W). Furthermore, we study the natural partial order ≤ on PT(V;W) in terms of domains and images and find elements of PT(V,W) which are compatible. © 2014 by the Mathematical Association of Thailand. All rights reserved. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Green's relations and partial orders on semigroups of partial linear transformations with restricted range | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Thai Journal of Mathematics | en_US |
article.volume | 12 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.