Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/53673
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chaiporn Thangthong | en_US |
dc.contributor.author | Phakdi Charoensawan | en_US |
dc.date.accessioned | 2018-09-04T09:55:10Z | - |
dc.date.available | 2018-09-04T09:55:10Z | - |
dc.date.issued | 2014-01-01 | en_US |
dc.identifier.issn | 16871812 | en_US |
dc.identifier.issn | 16871820 | en_US |
dc.identifier.other | 2-s2.0-84901773728 | en_US |
dc.identifier.other | 10.1186/1687-1812-2014-128 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901773728&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/53673 | - |
dc.description.abstract | In this work, we show the existence of a coupled coincidence point and a coupled common fixed point for a φcontractive mapping in G-metric spaces without the mixed g-monotone property, using the concept of a (F*, g)-invariant set. We also show the uniqueness of a coupled coincidence point and give some examples, which are not applied to the existence of a coupled coincidence point by using the mixed g-monotone property. Further, we apply our results to the existence and uniqueness of a coupled coincidence point of the given mapping in partially ordered G-metric spaces. © 2014 Thangthong and Charoensawan; licensee Springer. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Coupled coincidence point theorems for a φ-contractive mapping in partially ordered G-metric spaces without mixed g-monotone property | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Fixed Point Theory and Applications | en_US |
article.volume | 2014 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.