Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53664
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVítor H. Fernandesen_US
dc.contributor.authorPreeyanuch Honyamen_US
dc.contributor.authorTeresa M. Quinteiroen_US
dc.contributor.authorBoorapa Singhaen_US
dc.date.accessioned2018-09-04T09:55:00Z-
dc.date.available2018-09-04T09:55:00Z-
dc.date.issued2014-08-01en_US
dc.identifier.issn00371912en_US
dc.identifier.other2-s2.0-84942193328en_US
dc.identifier.other10.1007/s00233-013-9548-xen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84942193328&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53664-
dc.description.abstract© 2013, Springer Science+Business Media New York. Let X be a finite or infinite chain and let ${\mathcal{O}}(X)$ be the monoid of all endomorphisms of X. In this paper, we describe the largest regular subsemigroup of ${\mathcal{O}}(X)$ and Green’s relations on ${\mathcal{O}}(X)$. In fact, more generally, if Y is a nonempty subset of X and ${\mathcal{O}}(X,Y)$ is the subsemigroup of ${\mathcal{O}}(X)$ of all elements with range contained in Y, we characterize the largest regular subsemigroup of ${\mathcal{O}}(X,Y)$ and Green’s relations on ${\mathcal{O}}(X,Y)$. Moreover, for finite chains, we determine when two semigroups of the type ${\mathcal {O}}(X,Y)$ are isomorphic and calculate their ranks.en_US
dc.subjectMathematicsen_US
dc.titleOn semigroups of endomorphisms of a chain with restricted rangeen_US
dc.typeJournalen_US
article.title.sourcetitleSemigroup Forumen_US
article.volume89en_US
article.stream.affiliationsUniversidade Nova de Lisboaen_US
article.stream.affiliationsUniversidade de Lisboaen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsInstituto Superior de Engenharia de Lisboaen_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.