Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53568
Full metadata record
DC FieldValueLanguage
dc.contributor.authorW. Naklaen_US
dc.contributor.authorA. Wisitsora-Aten_US
dc.contributor.authorA. Tuantranonten_US
dc.contributor.authorP. Singjaien_US
dc.contributor.authorS. Phanichphanten_US
dc.contributor.authorC. Liewhiranen_US
dc.date.accessioned2018-09-04T09:51:46Z-
dc.date.available2018-09-04T09:51:46Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn09254005en_US
dc.identifier.other2-s2.0-84905020142en_US
dc.identifier.other10.1016/j.snb.2014.07.021en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84905020142&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53568-
dc.description.abstractIn this work, SnO2nanostructures prepared by a new high current heating (HCH) route are systematically studied for H2S gas sensing applications. In addition, their gas-sensing properties are compared with those of high-performance SnO2nanoparticles prepared by flame spray pyrolysis (FSP). The SnO2nanostructures were fabricated by gradually heating 30%SnO/70%C wires to a high temperature by passing high current in argon atmosphere. The material properties were characterized by XRD, AFM, SEM, EDS, TEM and XPS. The nanostructures formed around the wire were found to be mainly one-dimensional SnO2nanowires (NWs) (10-100 nm in diameter and tens to hundreds micrometers in length) with high aspect ratios (∼1000) and occasionally hierarchical nanoflowers while zero-dimensional SnO2nanoparticles (5-20 nm) were produced by FSP process. The sensing films were fabricated by spin coating of SnO2powders made by both methods above Al2O3substrates equipped with Au interdigitated electrodes and tested toward H2S (0.2-10 ppm) at 150-350 °C. It was found that the SnO2NWs fabricated by HCH showed high and rapid response to H2S with a high response of ∼380 and a short response time of ∼2.3 s at 10 ppm of H2S and a low optimal temperature of 250°C. A comparison between the two SnO2materials reveals that HCH-made SnO2NWs exhibits better H2S-sensing performances in terms of sensor response, response time and optimal operating temperature than FSP-made SnO2nanoparticles. The superior sensing performance of SnO2NWs could be attributed to better physical properties, particularly higher surface-to-volume ratio and highly reactive surface of single crystal NWs. Therefore, the SnO2NWs sensor prepared by HCH is a promising candidate for sensitive detection of H2S. © 2014 Elsevier B.V.en_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.subjectPhysics and Astronomyen_US
dc.titleH<inf>2</inf>S sensor based on SnO<inf>2</inf>nanostructured film prepared by high current heatingen_US
dc.typeJournalen_US
article.title.sourcetitleSensors and Actuators, B: Chemicalen_US
article.volume203en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsThailand National Electronics and Computer Technology Centeren_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.