Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53529
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRati Wonsathanen_US
dc.contributor.authorIsaravuth Seedadanen_US
dc.contributor.authorNittaya Nunloonen_US
dc.contributor.authorJesadapong Kitibuten_US
dc.date.accessioned2018-09-04T09:50:51Z-
dc.date.available2018-09-04T09:50:51Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn10226680en_US
dc.identifier.other2-s2.0-84901501871en_US
dc.identifier.other10.4028/www.scientific.net/AMR.931-932.1482en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901501871&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53529-
dc.description.abstractArtificial intelligent techniques are being actively applied in many applications. With their powerful learning capability of neural networks and reducing the optimizing search space by prior knowledge rules of Fuzzy systems have been proven to be rather efficiency. In this research, the hybrid Neuro-Fuzzy system (NF) is proposed to be utilized as a predictor of the Grade Point Average (GPA) of students for future planning where the Radial Basis Function (RBF) is implemented as a neuro-fuzzy system. The NF's parameters consisted of centre and width of the Gaussian membership function and weight between input layer and output layer are automatically tuned by using Genetic Algorithms (GA) referred as NF-GA. The collected data is then tested and trained through NF-GA system with Minimum Mean Square Error (MMSE) technique. It has been shown that our proposed model is capable of prediction GPA by accurately 93%.The performance comparison between the proposed NF-GA and Multiple Regression Analysis (MRA) gives performance significantly by reducing the average error of the prediction down to 10%. © (2014) Trans Tech Publications, Switzerland.en_US
dc.subjectEngineeringen_US
dc.titlePrediction of evaluation learning by using neuro-fuzzy systemen_US
dc.typeBook Seriesen_US
article.title.sourcetitleAdvanced Materials Researchen_US
article.volume931-932en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.