Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSupanika Leurcharusmeeen_US
dc.contributor.authorPeerapat Jatukannyaprateepen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.contributor.authorThierry Denoeuxen_US
dc.date.accessioned2018-09-04T09:49:07Z-
dc.date.available2018-09-04T09:49:07Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-84921510354en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84921510354&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53433-
dc.description.abstract© Springer International Publishing Switzerland 2014. We adapted the nonparametric evidence-theoretic k-Nearest Neighbor (k-NN) rule,whichwas originally designed formultinomial choice data, to rank-ordered choice data.The contribution of thismodel is its ability to extract information from all the observed rankings to improve the prediction power for each individual’s primary choice. The evidence-theoretic k-NNrule for heterogeneous rank-ordered datamethod can be consistently applied to complete and partial rank-ordered choice data. This model was used to predict an individual’s source of loan given his or her characteristics and also identify individual characteristics that help the prediction. The results show that the prediction from the rank-ordered choice model outperforms that of the traditionalmultinomial choicemodelwith only one observed choice.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleThe evidence-theoretic k-NN rule for rank-ordered data: Application to predict an individual’s source of loanen_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
article.volume8764en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversite de Technologie de Compiegneen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.