Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52755
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prasit Cholamjiak | en_US |
dc.contributor.author | Watcharaporn Cholamjiak | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-04T09:31:37Z | - |
dc.date.available | 2018-09-04T09:31:37Z | - |
dc.date.issued | 2013-05-10 | en_US |
dc.identifier.issn | 22343024 | en_US |
dc.identifier.issn | 12251763 | en_US |
dc.identifier.other | 2-s2.0-84877103827 | en_US |
dc.identifier.other | 10.4134/CKMS.2013.28.2.335 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84877103827&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/52755 | - |
dc.description.abstract | In this paper, we introduce a new iterative scheme for finding a common element of the fixed points set of a countable family of uni-formly Lipschitzian generalized asymptotically quasi-nonexpansive map-pings and the solutions set of equilibrium problems. Some strong con-vergence theorems of the proposed iterative scheme are established by using the concept of W-mappings of a countable family of uniformly Lip-schitzian generalized asymptotically quasi-nonexpansive mappings. © 2013 The Korean Mathematical Society. | en_US |
dc.subject | Mathematics | en_US |
dc.title | A hybrid method for a countable family of lipschitz generalized asymptotically quasi-nonexpansive mappings and an equilibrium problem | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Communications of the Korean Mathematical Society | en_US |
article.volume | 28 | en_US |
article.stream.affiliations | University of Phayao | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.