Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52752
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Phakdi Charoensawan | en_US |
dc.contributor.author | Chalongchai Klanarong | en_US |
dc.date.accessioned | 2018-09-04T09:31:35Z | - |
dc.date.available | 2018-09-04T09:31:35Z | - |
dc.date.issued | 2013-06-11 | en_US |
dc.identifier.issn | 13128876 | en_US |
dc.identifier.other | 2-s2.0-84878665520 | en_US |
dc.identifier.other | 10.12988/ijma.2013.3484 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878665520&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/52752 | - |
dc.description.abstract | In this paper, we prove existence of a coupled coincidence point theorem and coupled common fixed point theorem for φ-contractive mappings in partially ordered complete metric space without the mixed g-monotone property by using the concept of an (F, g)-invariant set.We prove some coupled fixed point theorems for such nonlinear contractive mappings in a complete metric space.Our results are generalization of the results of Wutiphol Sintunavarat,Poom Kumam and Yeol Je Cho (Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory and Applications 2012,2012:170.). © 2013 Phakdi Charoensawan and Chalongchai Klanarong. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Coupled coincidence point theorems for φ-contractive under (f, g)-invariant set in complete metric space | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Mathematical Analysis | en_US |
article.volume | 7 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.