Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52745
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wanida Choomanee | en_US |
dc.contributor.author | Preeyanuch Honyam | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-04T09:31:24Z | - |
dc.date.available | 2018-09-04T09:31:24Z | - |
dc.date.issued | 2013-08-30 | en_US |
dc.identifier.issn | 13143395 | en_US |
dc.identifier.issn | 13118080 | en_US |
dc.identifier.other | 2-s2.0-84882965960 | en_US |
dc.identifier.other | 10.12732/ijpam.v87i1.9 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/52745 | - |
dc.description.abstract | Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Regularity in semigroups of transformations with invariant sets | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Pure and Applied Mathematics | en_US |
article.volume | 87 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.