Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/52745
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWanida Choomaneeen_US
dc.contributor.authorPreeyanuch Honyamen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T09:31:24Z-
dc.date.available2018-09-04T09:31:24Z-
dc.date.issued2013-08-30en_US
dc.identifier.issn13143395en_US
dc.identifier.issn13118080en_US
dc.identifier.other2-s2.0-84882965960en_US
dc.identifier.other10.12732/ijpam.v87i1.9en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/52745-
dc.description.abstractLet T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd.en_US
dc.subjectMathematicsen_US
dc.titleRegularity in semigroups of transformations with invariant setsen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Pure and Applied Mathematicsen_US
article.volume87en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.