Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52737
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chalermpon Bunpog | en_US |
dc.date.accessioned | 2018-09-04T09:31:18Z | - |
dc.date.available | 2018-09-04T09:31:18Z | - |
dc.date.issued | 2013-10-29 | en_US |
dc.identifier.issn | 1312885X | en_US |
dc.identifier.other | 2-s2.0-84886264601 | en_US |
dc.identifier.other | 10.12988/ams.2013.36342 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84886264601&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/52737 | - |
dc.description.abstract | In this paper we study the compound equation where x = (x1, x2, . . . , xn) ∈ ℝn+ = {x ∈ ℝn | xi > 0}, a and b are nonzero constants. u(x) is unknown function and f(x) is a given distribution. (δB + a2)i is the Bessel-Helmholtz operator iterated i-times and ({combining square below}B + b2)j is the Bessel-Klein-Gordon operator iterated j-times. The existence and the uniqueness solution of (1) is proven. © 2013 Chalermpon Bunpog. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The compound equation related to the Bessel-Helmholtz equation and the Bessel-Klein-Gordon equation | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Applied Mathematical Sciences | en_US |
article.volume | 7 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.