Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/52420
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRungrote Kuawattanaphanen_US
dc.contributor.authorTeerawat Kumraien_US
dc.contributor.authorPaskorn Champraserten_US
dc.date.accessioned2018-09-04T09:25:07Z-
dc.date.available2018-09-04T09:25:07Z-
dc.date.issued2013-12-01en_US
dc.identifier.issn21593450en_US
dc.identifier.issn21593442en_US
dc.identifier.other2-s2.0-84894328390en_US
dc.identifier.other10.1109/TENCON.2013.6719022en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84894328390&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/52420-
dc.description.abstractThis paper proposes to apply a multiobjective optimization evolutionary algorithm in wireless sensor node redeployment process to improve network lifetime and sensing coverage. The multiobjective optimization uses a population of individuals, each of which represents a set of wireless sensor node positions, and evolves them via the genetic operations for seeking optimal sensing coverage and network lifetime. The data transmission success rate and the total moving cost are also added as constraints. Simulation results show that the proposed multiobjective optimization evolutionary algorithm outperforms a well-known existing evolutionary algorithm for multiobjective optimization. © 2013 IEEE.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleWireless sensor nodes redeployment using a multiobjective optimization evolutionary algorithmen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleIEEE Region 10 Annual International Conference, Proceedings/TENCONen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.