Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/52413
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEkapong Chuasuwanen_US
dc.contributor.authorNarissara Eiamkanitchaten_US
dc.date.accessioned2018-09-04T09:25:04Z-
dc.date.available2018-09-04T09:25:04Z-
dc.date.issued2013-12-01en_US
dc.identifier.other2-s2.0-84893611960en_US
dc.identifier.other10.1109/ICSEC.2013.6694809en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84893611960&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/52413-
dc.description.abstractThis paper presents a novel application of Genetic Algorithm for the feature selection. The main purpose is to provide proper subset features for decision tree construction in the classification task. New method with the use of 'Significant Matrix' on genetic algorithm is presented. The main function is to calculate the relationship between the feature and class label assigned to a fitness value for the population. The algorithm presented important features selected by considering the class of the data and number of features for the least amount in the Significant Matrix. The next step will then update the feature number and the record number to repeat the process until a stop condition is met. Classification by decision tree is used to verify the importance of the features selected by the proposed method. The model tested with 11 different datasets. The results show that the method yields high accuracy of the classification and higher satisfaction compared to classification using artificial neural network. Experimental results show that the proposed method not only provides a higher accuracy, but also reduce the complexity by using less features of the dataset. © 2013 IEEE.en_US
dc.subjectComputer Scienceen_US
dc.titleThe feature selection for classification by applying the Significant Matrix with SPEA2en_US
dc.typeConference Proceedingen_US
article.title.sourcetitle2013 International Computer Science and Engineering Conference, ICSEC 2013en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.