Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51820
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nirattaya Khamsemanan | en_US |
dc.contributor.author | Robert F. Brown | en_US |
dc.contributor.author | Catherine Lee | en_US |
dc.contributor.author | Sompong Dhompongsa | en_US |
dc.date.accessioned | 2018-09-04T06:09:40Z | - |
dc.date.available | 2018-09-04T06:09:40Z | - |
dc.date.issued | 2012-01-01 | en_US |
dc.identifier.issn | 16871812 | en_US |
dc.identifier.issn | 16871820 | en_US |
dc.identifier.other | 2-s2.0-84902592555 | en_US |
dc.identifier.other | 10.1186/1687-1812-2012-183 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84902592555&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/51820 | - |
dc.description.abstract | Schirmer proved that there is a class of smooth self-maps of the unit sphere in Euclidean n-space with the property that any smooth self-map of the unit ball that extends a map of that class must have at least one fixed point in the interior of the ball. We generalize Schirmer's result by proving that a smooth self-map of Euclidean n-space that extends a self-map of the unit sphere of that class must have at least one fixed point in the interior of the unit ball. © 2012 Khamsemanan et al.; licensee Springer. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Interior fixed points of unit-sphere-preserving Euclidean maps | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Fixed Point Theory and Applications | en_US |
article.volume | 2012 | en_US |
article.stream.affiliations | Thammasat University | en_US |
article.stream.affiliations | University of California, Los Angeles | en_US |
article.stream.affiliations | Bard High School Early College | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.