Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNirattaya Khamsemananen_US
dc.contributor.authorRobert F. Brownen_US
dc.contributor.authorCatherine Leeen_US
dc.contributor.authorSompong Dhompongsaen_US
dc.date.accessioned2018-09-04T06:09:40Z-
dc.date.available2018-09-04T06:09:40Z-
dc.date.issued2012-01-01en_US
dc.identifier.issn16871812en_US
dc.identifier.issn16871820en_US
dc.identifier.other2-s2.0-84902592555en_US
dc.identifier.other10.1186/1687-1812-2012-183en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84902592555&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/51820-
dc.description.abstractSchirmer proved that there is a class of smooth self-maps of the unit sphere in Euclidean n-space with the property that any smooth self-map of the unit ball that extends a map of that class must have at least one fixed point in the interior of the ball. We generalize Schirmer's result by proving that a smooth self-map of Euclidean n-space that extends a self-map of the unit sphere of that class must have at least one fixed point in the interior of the unit ball. © 2012 Khamsemanan et al.; licensee Springer.en_US
dc.subjectMathematicsen_US
dc.titleInterior fixed points of unit-sphere-preserving Euclidean mapsen_US
dc.typeJournalen_US
article.title.sourcetitleFixed Point Theory and Applicationsen_US
article.volume2012en_US
article.stream.affiliationsThammasat Universityen_US
article.stream.affiliationsUniversity of California, Los Angelesen_US
article.stream.affiliationsBard High School Early Collegeen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.