Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorW. Fupinwongen_US
dc.date.accessioned2018-09-04T06:09:36Z-
dc.date.available2018-09-04T06:09:36Z-
dc.date.issued2012-01-01en_US
dc.identifier.issn16871812en_US
dc.identifier.issn16871820en_US
dc.identifier.other2-s2.0-84902528913en_US
dc.identifier.other10.1186/1687-1812-2012-150en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84902528913&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/51816-
dc.description.abstractA Banach space X is said to have the fixed point property if for each nonexpansive mapping T : E → E on a bounded closed convex subset E of X has a fixed point. We show that each infinite dimensional Abelian complex Banach algebra X satisfying: (i) property (A) defined in (Fupinwong and Dhompongsa in Fixed Point Theory Appl. 2010:Article ID 34959, 2010), (ii) ||x|| ≤ ||y|| for each x, y ∈ X such that |τ(x)| ≤ |τ(y)| for each τ ∈ Ω(X), (iii) inf{r(x) : x ∈ X, ||x|| = 1} > 0 does not have the fixed point property. This result is a generalization of Theorem 4.3 in (Fupinwong and Dhompongsa in Fixed Point Theory Appl. 2010:Article ID 34959, 2010). © 2012 Fupinwong; licensee Springer.en_US
dc.subjectMathematicsen_US
dc.titleNonexpansive mappings on Abelian Banach algebras and their fixed pointsen_US
dc.typeJournalen_US
article.title.sourcetitleFixed Point Theory and Applicationsen_US
article.volume2012en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.