Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51816
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | W. Fupinwong | en_US |
dc.date.accessioned | 2018-09-04T06:09:36Z | - |
dc.date.available | 2018-09-04T06:09:36Z | - |
dc.date.issued | 2012-01-01 | en_US |
dc.identifier.issn | 16871812 | en_US |
dc.identifier.issn | 16871820 | en_US |
dc.identifier.other | 2-s2.0-84902528913 | en_US |
dc.identifier.other | 10.1186/1687-1812-2012-150 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84902528913&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/51816 | - |
dc.description.abstract | A Banach space X is said to have the fixed point property if for each nonexpansive mapping T : E → E on a bounded closed convex subset E of X has a fixed point. We show that each infinite dimensional Abelian complex Banach algebra X satisfying: (i) property (A) defined in (Fupinwong and Dhompongsa in Fixed Point Theory Appl. 2010:Article ID 34959, 2010), (ii) ||x|| ≤ ||y|| for each x, y ∈ X such that |τ(x)| ≤ |τ(y)| for each τ ∈ Ω(X), (iii) inf{r(x) : x ∈ X, ||x|| = 1} > 0 does not have the fixed point property. This result is a generalization of Theorem 4.3 in (Fupinwong and Dhompongsa in Fixed Point Theory Appl. 2010:Article ID 34959, 2010). © 2012 Fupinwong; licensee Springer. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Nonexpansive mappings on Abelian Banach algebras and their fixed points | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Fixed Point Theory and Applications | en_US |
article.volume | 2012 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.