Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51784
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDecha Samanaen_US
dc.contributor.authorVites Longanien_US
dc.date.accessioned2018-09-04T06:09:00Z-
dc.date.available2018-09-04T06:09:00Z-
dc.date.issued2012-10-16en_US
dc.identifier.issn1312885Xen_US
dc.identifier.other2-s2.0-84867310928en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84867310928&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/51784-
dc.description.abstractFor positive integers s and t, the Ramsey number R(s, t) is the least positive integer n such that for every graph G of order n, either G contains Ks as a subgraph or G contains Kt as a subgraph. A widely known theorem, proved by Erdös, state that. In this paper, we improve the upper bounds for R(s, t). That is, we find that.en_US
dc.subjectMathematicsen_US
dc.titleUpper bounds of Ramsey numbersen_US
dc.typeJournalen_US
article.title.sourcetitleApplied Mathematical Sciencesen_US
article.volume6en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.