Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51779
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kritsada Sangkhanan | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-04T06:08:53Z | - |
dc.date.available | 2018-09-04T06:08:53Z | - |
dc.date.issued | 2012-11-19 | en_US |
dc.identifier.issn | 13143395 | en_US |
dc.identifier.issn | 13118080 | en_US |
dc.identifier.other | 2-s2.0-84869017393 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84869017393&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/51779 | - |
dc.description.abstract | Let V be any vector space and I(V) the set of all partial injective linear transformations defined on V, that is, all injective linear transformations α: A → B where A, B are subspaces of V. Then I(V) is a semigroup under composition. Let W be a subspace of V. Define I(V, W)={α∈ I(V): V α ⊆ W}. So I(V,W) is a subsemigroup of I(V). In this paper, we present the largest regular subsemigroup of I(V, W) and determine its Green's relations. Furthermore, we study the natural partial order ≤ on I(V, W) in terms of domains and images, compare ≤ with the subset order and find elements of I(V, W) which are compatible. © 2012 Academic Publications, Ltd. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Semigroups of injective partial linear transformations with restricted range: Green's relations and partial orders | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Pure and Applied Mathematics | en_US |
article.volume | 80 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.