Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51000
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | S. Dhompongsa | en_US |
dc.contributor.author | W. Fupinwong | en_US |
dc.contributor.author | W. Takahashi | en_US |
dc.contributor.author | J. C. Yao | en_US |
dc.date.accessioned | 2018-09-04T04:49:41Z | - |
dc.date.available | 2018-09-04T04:49:41Z | - |
dc.date.issued | 2010-04-01 | en_US |
dc.identifier.issn | 18805221 | en_US |
dc.identifier.issn | 13454773 | en_US |
dc.identifier.other | 2-s2.0-78650736801 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78650736801&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/51000 | - |
dc.description.abstract | In this paper, we first prove a fixed point theorem for generalized nonexpansive type mappings in a Banach space by using Kohsaka and Takahashi's fixed point theorem [10] for nonspreading mappings. Then using Takahashi, Yao and Kohsaka's result [21], we obtain a necessary and sufficient condition for the existence of fixed points of generalized nonexpansive type mappings. Further, we prove a fixed point theorem for nonspreading mappings with compact domains in a Banach space. Using this result, we give a necessary and sufficient condition for strict convexity of Banach spaces. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Fixed point theorems for nonlinear mappings and strict convexity of banach spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Nonlinear and Convex Analysis | en_US |
article.volume | 11 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | National Sun Yat-Sen University Taiwan | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.