Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50995
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | E. Suntonsinsoungvon | en_US |
dc.contributor.author | A. Kananthai | en_US |
dc.date.accessioned | 2018-09-04T04:49:33Z | - |
dc.date.available | 2018-09-04T04:49:33Z | - |
dc.date.issued | 2010-06-16 | en_US |
dc.identifier.issn | 13128876 | en_US |
dc.identifier.other | 2-s2.0-77953348796 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953348796&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50995 | - |
dc.description.abstract | In this article, we study the solution of the equation where {lozenge, open}kB(□B+m2)k is the product of the Bessel diamond operator and the Bessel Klein-Gordon operator, u is an unknown generalized function, f is a generalized function, m is a positive real number and k is a nonnegative integer. It found that the existence of the solution u(x) of such n equation depends on the condition of f and {increment}kB-1{lozenge, open}kB(□B+m2)k u(x). Moreover such a solution u(x) related to the Bessel biharmonic equation depends on the conditions of p, q and k. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The nonlinear product of the bessel diamond operator and the bessel klein-gordon operator related to the bessel biharmonic equation | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Mathematical Analysis | en_US |
article.volume | 4 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.