Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50976
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | A. Kaewkhao | en_US |
dc.contributor.author | K. Sokhuma | en_US |
dc.date.accessioned | 2018-09-04T04:49:10Z | - |
dc.date.available | 2018-09-04T04:49:10Z | - |
dc.date.issued | 2010-12-01 | en_US |
dc.identifier.issn | 16871812 | en_US |
dc.identifier.issn | 16871820 | en_US |
dc.identifier.other | 2-s2.0-79251579274 | en_US |
dc.identifier.other | 10.1155/2010/618767 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79251579274&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50976 | - |
dc.description.abstract | Let E be a nonempty compact convex subset of a uniformly convex Banach space X, and let t: E → E and T: E → K C (E) be a single-valued nonexpansive mapping and a multivalued nonexpansive mapping, respectively. Assume in addition that Fix (t) ∩ Fix (T) ≠ θ and Tw = {w} for all w ε Fix (t) ∩ Fix (T). We prove that the sequence of the modified Ishikawa iteration method generated from an arbitrary x0 ε by yn = (1 -βn) xn + βn zn, xn + 1 = (1 - n) xn + an ty n, where zn Txn and {an}, {βn} are sequences of positive numbers satisfying 0 < a ≤ an, βn b < 1, converges strongly to a common fixed point of t and T; that is, there exists x ε E such that x = tx ε Tx. Copyright © 2010 K. Sokhuma and A. Kaewkhao. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Ishikawa iterative process for a pair of single-valued and multivalued nonexpansive mappings in Banach spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Fixed Point Theory and Applications | en_US |
article.volume | 2010 | en_US |
article.stream.affiliations | Burapha University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.