Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50976
Full metadata record
DC FieldValueLanguage
dc.contributor.authorA. Kaewkhaoen_US
dc.contributor.authorK. Sokhumaen_US
dc.date.accessioned2018-09-04T04:49:10Z-
dc.date.available2018-09-04T04:49:10Z-
dc.date.issued2010-12-01en_US
dc.identifier.issn16871812en_US
dc.identifier.issn16871820en_US
dc.identifier.other2-s2.0-79251579274en_US
dc.identifier.other10.1155/2010/618767en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79251579274&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50976-
dc.description.abstractLet E be a nonempty compact convex subset of a uniformly convex Banach space X, and let t: E → E and T: E → K C (E) be a single-valued nonexpansive mapping and a multivalued nonexpansive mapping, respectively. Assume in addition that Fix (t) ∩ Fix (T) ≠ θ and Tw = {w} for all w ε Fix (t) ∩ Fix (T). We prove that the sequence of the modified Ishikawa iteration method generated from an arbitrary x0 ε by yn = (1 -βn) xn + βn zn, xn + 1 = (1 - n) xn + an ty n, where zn Txn and {an}, {βn} are sequences of positive numbers satisfying 0 < a ≤ an, βn b < 1, converges strongly to a common fixed point of t and T; that is, there exists x ε E such that x = tx ε Tx. Copyright © 2010 K. Sokhuma and A. Kaewkhao.en_US
dc.subjectMathematicsen_US
dc.titleIshikawa iterative process for a pair of single-valued and multivalued nonexpansive mappings in Banach spacesen_US
dc.typeJournalen_US
article.title.sourcetitleFixed Point Theory and Applicationsen_US
article.volume2010en_US
article.stream.affiliationsBurapha Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.