Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50135
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakkrid Klin-Eamen_US
dc.contributor.authorSuthep Suantaien_US
dc.contributor.authorWataru Takahashien_US
dc.date.accessioned2018-09-04T04:24:54Z-
dc.date.available2018-09-04T04:24:54Z-
dc.date.issued2011-01-01en_US
dc.identifier.issn10275487en_US
dc.identifier.other2-s2.0-79958147738en_US
dc.identifier.other10.11650/twjm/1500406296en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79958147738&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50135-
dc.description.abstractIn this paper, we prove strong convergence theorems of modified Halpern's iteration for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a relatively nonexpansive mapping in a Banach space by using two hybrid methods. Using these results, we obtain new convergence results for resolvents of maximal monotone operators and relatively nonexpansive mappings in Banach spaces.en_US
dc.subjectMathematicsen_US
dc.titleGeneralized projection algorithms for maximal monotone operators and relatively non expansive mappings in Banach spacesen_US
dc.typeJournalen_US
article.title.sourcetitleTaiwanese Journal of Mathematicsen_US
article.volume15en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsTokyo Institute of Technologyen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.