Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50135
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chakkrid Klin-Eam | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.contributor.author | Wataru Takahashi | en_US |
dc.date.accessioned | 2018-09-04T04:24:54Z | - |
dc.date.available | 2018-09-04T04:24:54Z | - |
dc.date.issued | 2011-01-01 | en_US |
dc.identifier.issn | 10275487 | en_US |
dc.identifier.other | 2-s2.0-79958147738 | en_US |
dc.identifier.other | 10.11650/twjm/1500406296 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79958147738&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50135 | - |
dc.description.abstract | In this paper, we prove strong convergence theorems of modified Halpern's iteration for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a relatively nonexpansive mapping in a Banach space by using two hybrid methods. Using these results, we obtain new convergence results for resolvents of maximal monotone operators and relatively nonexpansive mappings in Banach spaces. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Generalized projection algorithms for maximal monotone operators and relatively non expansive mappings in Banach spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Taiwanese Journal of Mathematics | en_US |
article.volume | 15 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Tokyo Institute of Technology | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.