Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50127
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Preeyanuch Honyam | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-04T04:24:45Z | - |
dc.date.available | 2018-09-04T04:24:45Z | - |
dc.date.issued | 2011-03-18 | en_US |
dc.identifier.issn | 03049914 | en_US |
dc.identifier.other | 2-s2.0-79952597964 | en_US |
dc.identifier.other | 10.4134/JKMS.2011.48.2.289 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79952597964&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50127 | - |
dc.description.abstract | Let T(X) denote the semigroup (under composition) of trans-formations from X into itself. For a xed nonempty subset Y of X, let S(X, Y) = {α ε T(X): Y α ⊆ Y} Then S(X, Y) is a semigroup of total transformations of X which leave a subset Y of X invariant. In this paper, we characterize when S(X, Y) is isomorphic to T(Z) for some set Z and prove that every semigroup A can be embedded in S(A1;A). Then we describe Green's relations for S(X, Y) and apply these results to obtain its group H-classes and ideals. © 2011 The Korean Mathematical Society. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Semigroups of transformations with invariant set | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of the Korean Mathematical Society | en_US |
article.volume | 48 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.