Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPreeyanuch Honyamen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T04:24:45Z-
dc.date.available2018-09-04T04:24:45Z-
dc.date.issued2011-03-18en_US
dc.identifier.issn03049914en_US
dc.identifier.other2-s2.0-79952597964en_US
dc.identifier.other10.4134/JKMS.2011.48.2.289en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79952597964&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50127-
dc.description.abstractLet T(X) denote the semigroup (under composition) of trans-formations from X into itself. For a xed nonempty subset Y of X, let S(X, Y) = {α ε T(X): Y α ⊆ Y} Then S(X, Y) is a semigroup of total transformations of X which leave a subset Y of X invariant. In this paper, we characterize when S(X, Y) is isomorphic to T(Z) for some set Z and prove that every semigroup A can be embedded in S(A1;A). Then we describe Green's relations for S(X, Y) and apply these results to obtain its group H-classes and ideals. © 2011 The Korean Mathematical Society.en_US
dc.subjectMathematicsen_US
dc.titleSemigroups of transformations with invariant seten_US
dc.typeJournalen_US
article.title.sourcetitleJournal of the Korean Mathematical Societyen_US
article.volume48en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.