Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50123
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoorapa Singhaen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T04:24:42Z-
dc.date.available2018-09-04T04:24:42Z-
dc.date.issued2011-06-22en_US
dc.identifier.issn16870425en_US
dc.identifier.issn01611712en_US
dc.identifier.other2-s2.0-79959284170en_US
dc.identifier.other10.1155/2011/489674en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79959284170&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50123-
dc.description.abstractSuppose that X is an infinite set with | X | ≥ q ≥ ℘0and I (X) is the symmetric inverse semigroup defined on X. In 1984, Levi and Wood determined a class of maximal subsemigroups MA(using certain subsets A of X) of the Baer-Levi semigroup B L (q) = {α ∈ I (X): dom α = X and | X\Xα | = q }. Later, in 1995, Hotzel showed that there are many other classes of maximal subsemigroups of B L (q), but these are far more complicated to describe. It is known that B L (q) is a subsemigroup of the partial Baer-Levi semigroup PS(q)={α ∈ I(X):| X\X α | = q }. In this paper, we characterize all maximal subsemigroups of P S (q) when | X | > q, and we extend MAto obtain maximal subsemigroups of P S (q) when | X | = q. Copyright © 2011 Boorapa Singha and Jintana Sanwong.en_US
dc.subjectMathematicsen_US
dc.titleOn maximal subsemigroups of partial Baer-Levi semigroupsen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Mathematics and Mathematical Sciencesen_US
article.volume2011en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.