Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50119
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T04:24:36Z-
dc.date.available2018-09-04T04:24:36Z-
dc.date.issued2011-08-01en_US
dc.identifier.issn00371912en_US
dc.identifier.other2-s2.0-80051547466en_US
dc.identifier.other10.1007/s00233-011-9320-zen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80051547466&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50119-
dc.description.abstractLet T(X) be the full transformation semigroup on the set X and let T(X,Y) be the semigroup consisting of all total transformations from X into a fixed subset Y of X. It is known that F(X, Y)={αT(X, Y): Xα⊆ Y=α}, is the largest regular subsemigroup of T(X,Y) and determines Green's relations on T(X,Y). In this paper, we show that F(X,Y)≅T(Z) if and only if X=Y and {pipe}Y{pipe}={pipe}Z{pipe}; or {pipe}Y{pipe}=1={pipe}Z{pipe}, and prove that every regular semigroup S can be embedded in F(S1,S). Then we describe Green's relations and ideals of F(X,Y) and apply these results to get all of its maximal regular subsemigroups when Y is a nonempty finite subset of X. © 2011 Springer Science+Business Media, LLC.en_US
dc.subjectMathematicsen_US
dc.titleThe regular part of a semigroup of transformations with restricted rangeen_US
dc.typeJournalen_US
article.title.sourcetitleSemigroup Forumen_US
article.volume83en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.