Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | B. Panyanak | en_US |
dc.contributor.author | A. Cuntavepanit | en_US |
dc.date.accessioned | 2018-09-04T04:24:32Z | - |
dc.date.available | 2018-09-04T04:24:32Z | - |
dc.date.issued | 2011-09-16 | en_US |
dc.identifier.issn | 16870409 | en_US |
dc.identifier.issn | 10853375 | en_US |
dc.identifier.other | 2-s2.0-80052686272 | en_US |
dc.identifier.other | 10.1155/2011/824718 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116 | - |
dc.description.abstract | Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. | en_US |
dc.subject | Mathematics | en_US |
dc.title | A generalization of Suzuki's lemma | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Abstract and Applied Analysis | en_US |
article.volume | 2011 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.