Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/49869
Full metadata record
DC FieldValueLanguage
dc.contributor.authorT. Dumrongpokaphanen_US
dc.contributor.authorW. Jaihonglamen_US
dc.contributor.authorR. Ouncharoenen_US
dc.date.accessioned2018-09-04T04:19:33Z-
dc.date.available2018-09-04T04:19:33Z-
dc.date.issued2011-09-23en_US
dc.identifier.issn18675662en_US
dc.identifier.other2-s2.0-80052934414en_US
dc.identifier.other10.1007/978-3-642-22833-9_54en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052934414&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/49869-
dc.description.abstractAn SI1I2RS epidemic model is studied. We derive the sufficient conditions on the system parameters which guarantee that the equilibrium points of the system are locally asymptotically stable or globally asymptotically stable. © 2011 Springer-Verlag Berlin Heidelberg.en_US
dc.subjectComputer Scienceen_US
dc.titleStability of a two epidemics modelen_US
dc.typeBook Seriesen_US
article.title.sourcetitleAdvances in Intelligent and Soft Computingen_US
article.volume100en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.