Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/49705
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Watshara Shoombuatong | en_US |
dc.contributor.author | Patrinee Traisathit | en_US |
dc.contributor.author | Sukon Prasitwattanaseree | en_US |
dc.contributor.author | Chatchai Tayapiwatana | en_US |
dc.contributor.author | Robert Cutler | en_US |
dc.contributor.author | Jeerayut Chaijaruwanich | en_US |
dc.date.accessioned | 2018-09-04T04:05:48Z | - |
dc.date.available | 2018-09-04T04:05:48Z | - |
dc.date.issued | 2011-07-01 | en_US |
dc.identifier.issn | 17485681 | en_US |
dc.identifier.issn | 17485673 | en_US |
dc.identifier.other | 2-s2.0-79960970337 | en_US |
dc.identifier.other | 10.1504/IJDMB.2011.041559 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79960970337&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/49705 | - |
dc.description.abstract | The formation of disulphide bonds between cysteines plays a major role in protein folding, structure, function and evolution. Many computational approaches have been used to predict the disulphide bonding state of cysteines. In our work, we developed a novel method based on Conditional Random Fields (CRFs) to predict the disulphide bonding state from protein primary sequence, predicted secondary structures and predicted relative solvent accessibilities (all-state information). Our experiments obtain 84% accuracy, 88% precision and 94% recall, using all-state information. However, our results show essentially identical results when using protein sequence and predicted relative solvent accessibilities in the absence of secondary structure. © 2011 Inderscience Enterprises Ltd. | en_US |
dc.subject | Biochemistry, Genetics and Molecular Biology | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Social Sciences | en_US |
dc.title | Prediction of the disulphide bonding state of cysteines in proteins using Conditional Random Fields | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Data Mining and Bioinformatics | en_US |
article.volume | 5 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Thailand National Science and Technology Development Agency | en_US |
article.stream.affiliations | null | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.