Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/78897
Title: | การประยุกต์ใช้โครงข่ายประสาทเทียมเพื่อพยากรณ์อาการเสียของเครื่องจักรการทำชั้นในตัวเก็บประจุ |
Other Titles: | Application of artificial neural network forforecasting causes of stacking capacitor machine breakdown |
Authors: | สิทธิพงษ์ สมย้อย |
Authors: | คมกฤต เล็กสกุล สิทธิพงษ์ สมย้อย |
Issue Date: | Jun-2023 |
Publisher: | เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ |
Abstract: | Due to machine breakdown incident to loss in manufacturing process. One of maintenance activity to reduce breakdown loss is the preventive maintenance. It is effectively activity in normal production. When demand is higher than machine capacity, machine loss is uncontrollable. This study offers the methodology of the optimal of Backward propagation neural network for forecasting the next daily summation of machine lost time at a Capacitor Stacking Machine. This neural network has 7 input layers and an output layer. It is the next daily sum of machine lost time at the Capacitor Stacking machine and find-out the optimal layer 3,4 and 5 layers. And the optimal node in each hidden layer. There are 10 and 100 nodes in the hidden layer.Finally, the optimal training method that machine with the machine gathering data. There are 3 methods in this study split-test training, 5-fold Cross Validation and 10-fold Cross Validation. The proper neural network structure makes accuracy forecasting value in the next period. In the study, the 5 layers of Backward propagation neural network at 7-100-10-10-1 with the split-test training give RMSE at 51.293 minutes the computational runtime is 5.405 second. This study shown good git to decision maker form data-driven framework must trader-off the smallest error or short computational runtime depend on the purpose of application. |
URI: | http://cmuir.cmu.ac.th/jspui/handle/6653943832/78897 |
Appears in Collections: | ENG: Independent Study (IS) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
640632016 สิทธิพงษ์ สมย้อย.pdf | 3.04 MB | Adobe PDF | View/Open Request a copy |
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.