Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/73457
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | ดำรงศักดิ์ รินชุมภู | - |
dc.contributor.author | สิทธิกร สิทธิการกูล | en_US |
dc.date.accessioned | 2022-06-27T10:13:23Z | - |
dc.date.available | 2022-06-27T10:13:23Z | - |
dc.date.issued | 2021-05 | - |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/73457 | - |
dc.description.abstract | Due to the overall contraction of the construction industry in the country, the bidding competition required effective precision to prevent losses from too-low price in the bidding process, either in the private or public sector. However, before the bidding process, the bidders must have an estimate of the construction cost before the bidding. There are two widely used methods for construction cost estimation as a rough estimation, which has the advantage of being able to estimate construction cost quickly but has the disadvantage which is a high price tolerance, and a detailed estimation, which its advantage is the ability to estimate the construction costs more accurately, but its disadvantages are the need for a complete construction plan and a more time-consuming process. After considering the disadvantages of the 2 construction cost estimation methods, research for modeling the government construction cost estimation was conducted by using the technique of the forecasting model, the econometric model by using the linear regression analysis technique and the artificial intelligence model by using the Artificial Neural Network technique. There were 11 variables in total as 1) usage area of the building 2) average perimeter 3) average inter-floor height 4) building height 5) the number of floors 6) roof area 7) bathroom area 8) ground slab 9) open space 10) type of roofing material and 11) type of floor structure. For the result of linear regression analysis technique, the study showed that R2 = 0.732. Plus, the study result of Artificial Neural Network technique showed that the model consisted of 2 hidden layers which each layer has the number of nodes at 10 and 8 nodes, respectively, with the best Root Mean Square Error value at ± 0.331 million Baht. When the new data set was tested for validity, it was found that R2 = 0.914 which has proved the accuracy of the forecasting model as an alternative for government bidding participants to reduce the tolerances and to spend less time to estimate construction costs more efficiently. | en_US |
dc.language.iso | other | en_US |
dc.publisher | เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ | en_US |
dc.title | การประมาณราคาค่าก่อสร้างสำหรับอาคารงานราชการโดยใช้เทคนิคการสร้างแบบจำลองพยากรณ์ | en_US |
dc.title.alternative | Construction cost estimation for government building using prediction modeling techniques | en_US |
dc.type | Thesis | |
thailis.controlvocab.thash | การก่อสร้าง | - |
thailis.controlvocab.thash | การก่อสร้าง -- การประมาณราคา | - |
thailis.controlvocab.thash | แบบจำลองทางวิศวกรรม | - |
thailis.controlvocab.thash | อาคาร -- การก่อสร้าง | - |
thesis.degree | master | en_US |
thesis.description.thaiAbstract | จากการหดตัวลงของอุตสาหกรรมการก่อสร้างโดยรวมในประเทศนั้นทำให้การแข่งขันใน การประมูลงานนั้นจำเป็นต้องมีความแม่นยำในการเสนอราคาที่เหมาะสม เพื่อป้องกันการขาดทุนจาก การเสนอราคาที่ต่ำเกินไปในขั้นตอนของการประมูลงาน ทั้งการประมูลงานในส่วนภาคเอกชนหรือ ในภาครัฐ อย่างไรก็ตามก่อนการประประมูลงานนั้นผู้ข้าร่วมการประมูลงานต้องมีการประมาณราคาก่อสร้างก่อนการประมูลงาน โดยวิธีในการประมาณราคาก่อสร้างนั้นสามารถแบ่งได้ 2 วิธีที่นิยมใช้ กันอย่างแพร่หลาย คือ การประมาณราคาก่อสร้างอย่างหยาบ ที่มีจุดเด่นคือสามารถทำการประมาณ ราคาค่าก่อสร้างได้อย่างรวดเร็ว มีจุดค้อยคือความคลาดเคลื่อนในราคาสูง และการประมาณราคา ก่อสร้างอย่งละเอียด มีจุดเด่นคือสามารถทำการประมาณราคาก่อสร้างได้แม่นยำมากกว่า มีจุดค้อยคือแบบแปลนต้องมีความครบถ้วนสมบูรณ์ และใช้เวลาในการประมาณราคาก่อสร้างที่มาก เมื่อพิจารณาถึงจุดด้อยของวิธีการประมาณราคาก่อสร้างทั้ง 2 วิธีจึงเกิดการวิจัยสร้างแบบจำลองการประมาณราคาก่อสร้างงานราชการโดยใช้เทคนิคการสร้างแบบจำลองพยากรณ์ แบบจำลองทางเศรษฐมิติ โดยใช้เทคนิคการวิเคราะห์การถดถอยเชิงสั่น และแบบจำลองทางปัญญาประดิษฐ์ โดยใช้เทคนิคโครงข่ายประสาทเทียม มีตัวแปรทั้งสิ้น 11 ตัว คือ 1) ขนาดพื้นที่ใช้สอยของอาคาร 2) เส้นรอบรูปเฉลี่ย 3) ความสูงระหว่างชั้นเฉลี่ย 4) ความสูงของอาคาร 5) จำนวนชั้น 6) พื้นที่หลังคา 7) ขนาดห้องน้ำ 8) พื้นที่วางบนดิน 9) พื้นที่ช่องเปิด 10) รูปแบบของวัสดุมุงหลังคา และ 11) ประเภทของโครงสร้างพื้น สำหรับโดยผลการศึกษาเทคนิคการวิเคราะห์การถดถอยเชิงเส้นพบว่า R2 = 0.732 และสำหรับผลการศึกษาเทคนิคโครงข่ายประสาทเทียมพบว่าแบบจำลองที่มีจำนวน 2 Hidden Layer โดยแต่ละ Layer มีจำนวน Node อยู่ที่ 10 Node และ 8 Node ตามลำดับ โดยมีค่า Root Mean Square Eror ดีที่สุดอยู่ที่ 0.33 1 ล้านบาท เมื่อนำมาทดสอบความถูกต้องกับชุดข้อมูลใหม่แล้วผลลัพธ์พบว่ามีค่า R2 = 0.914 เป็นการพิสูจน์ความแม่นยำของแบบจำลองพยากรณ์ เพื่อเป็นอีกทางเลือกหนึ่งที่ให้สู้ข้าร่วมการประมูลงานภาครัฐจะสามารถลดช่วงความคลาดเคลื่อนและใช้ระยะเวลาในการประมาณราคาก่อสร้างน้อยได้อย่างมีประสิทธิภาพต่อไป | en_US |
Appears in Collections: | ENG: Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
620631002 สิทธิกร สิทธิการกูล.pdf | 12.49 MB | Adobe PDF | View/Open Request a copy |
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.