Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/69279
Title: การประมาณราคาก่อสร้างบ้านพักอาศัยโดยเทคนิคโครงข่ายประสาทเทียม
Other Titles: Residential building cost estimation using artificial neural network approach
Authors: ชยานนท์ หรรษภิญโญ
วิศว์ ดวงแสงทอง
Keywords: การประมาณราคา
บ้านพักอาศัย
เทคนิคโครงข่ายประสาทเทียม
Issue Date: Apr-2016
Publisher: เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
Abstract: This independent study aims to study on the efficiency of cost prediction of less than 2-story houses in Thailand using Artificial Neural Network Technique. The study done by modeling a cost predictive model by using 8 types of functional area of house as inputs of artificial neural network. Training of the model done on 50 samples of no more than 2 stories houses. Using the model to estimate house price in comparison to regression analysis technique. Results of the study showing that the Artificial Neural Network technique is more accurate than regression analysis technique. Moreover, Artificial Neural Network technique also can be uses in various size of houses. While regression analysis has limited use on specific range of sizing of houses.
URI: http://cmuir.cmu.ac.th/jspui/handle/6653943832/69279
Appears in Collections:ENG: Independent Study (IS)

Files in This Item:
File Description SizeFormat 
Full.pdf3.54 MBAdobe PDFView/Open    Request a copy


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.