Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57910
Title: Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions
Authors: U. Raghavendra
U. Rajendra Acharya
Anjan Gudigar
Jen Hong Tan
Hamido Fujita
Yuki Hagiwara
Filippo Molinari
Pailin Kongmebhol
Kwan Hoong Ng
Keywords: Physics and Astronomy
Issue Date: 1-May-2017
Abstract: © 2017 Elsevier B.V. Thyroid is a small gland situated at the anterior side of the neck and one of the largest glands of the endocrine system. The abrupt cell growth or malignancy in the thyroid gland may cause thyroid cancer. Ultrasound images distinctly represent benign and malignant lesions, but accuracy may be poor due to subjective interpretation. Computer Aided Diagnosis (CAD) can minimize the errors created due to subjective interpretation and assists to make fast accurate diagnosis. In this work, fusion of Spatial Gray Level Dependence Features (SGLDF) and fractal textures are used to decipher the intrinsic structure of benign and malignant thyroid lesions. These features are subjected to graph based Marginal Fisher Analysis (MFA) to reduce the number of features. The reduced features are subjected to various ranking methods and classifiers. We have achieved an average accuracy, sensitivity and specificity of 97.52%, 90.32% and 98.57% respectively using Support Vector Machine (SVM) classifier. The achieved maximum Area Under Curve (AUC) is 0.9445. Finally, Thyroid Clinical Risk Index (TCRI) a single number is developed using two MFA features to discriminate the two classes. This prototype system is ready to be tested with huge diverse database.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85013131089&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57910
ISSN: 0041624X
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.