Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/78948
Title: Best proximity coincidence point theorem for G-proximal generalized auxiliary function in a metric space with Graph G
Other Titles: ทฤษฎีบทจุดใกล้ร่วมทับกันสนิทดีที่สุดสำหรับฟังก์ชันช่วยที่วางนัยทั่วไปใกล้ร่วมแบบจีในปริภูมิอิงระยะทางที่มากับกราฟจี
Authors: Khamsanga Sinsongkham
Authors: Watchareepan Atiponrat
Khamsanga Sinsongkham
Issue Date: Nov-2021
Publisher: Chiang Mai : Graduate School, Chiang Mai University
Abstract: We study best proximity coincidence points of a pair of mappings that is G- proximal generalized auxiliary function in a complete metric space endowed with a directed graph G and prove that if any pair of two best proximity coincidence points is an edge of the graph G, then the best proximity coincidence points is unique. Besides, we give an example and corollaries relevant to our main theorem.
URI: http://cmuir.cmu.ac.th/jspui/handle/6653943832/78948
Appears in Collections:SCIENCE: Theses

Files in This Item:
File Description SizeFormat 
620531032 KHAMSANGA SINSONGKHAM.pdf3.54 MBAdobe PDFView/Open    Request a copy


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.