Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/78904
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPasuk Mahakkanukrauh-
dc.contributor.advisorSukon Prasitwattanaseree-
dc.contributor.advisorTawachai Monum-
dc.contributor.advisorWannakamon Panyarak-
dc.contributor.advisorPatison Palee-
dc.contributor.authorPatara Rattanacheten_US
dc.date.accessioned2023-09-28T01:27:25Z-
dc.date.available2023-09-28T01:27:25Z-
dc.date.issued2023-08-
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/78904-
dc.description.abstractThe objective of this dissertation is to utilize proximal femur in the estimation of biological profiles. The proximal femur is a skeletal structure that articulates with the acetabulum of the pelvic bone, forming the hip joint, and constitutes approximately one-fourth of the femoral length. The identifiable features of the proximal femur, including the femoral head, fovea capitis, femoral neck, greater and lesser trochanters, and proximal shafts, can be used to estimate crucial biological parameters, including stature, sex, age, and ancestry. Therefore, in situations where only the proximal femur is available for examination, a comprehensive biological profile of an unknown individual can be obtained through osteometric approaches applied to the proximal femora. The study involved radiographic and manual measurements of 354 left femora, with comparison of virtual measurements obtained through an image processing program to manual measurements taken from dry femora. The virtual measurements showed good agreement with the dry femur data for all variables except for femoral neck diameter. However, the level of agreement between the two measurement methods did not fall within the acceptable error range. Thus, based on these findings, it cannot be recommended that the virtual method proposed in this study be used as a substitute for dry-bone measurement. The proximal femur may also be used to determine population affinity and estimate ancestry when skulls are not available for analysis. The study investigated the ancestral differences between Thai femora in a local skeletal collection and femora from different ethnicities in an international collection. The measurements obtained from the two collections were found to differ significantly, with the exception of femoral neck diameter and the distance between the apex of the greater trochanter and the lateral margin of the articular surface of the femoral head. The kernel logistic regression model was found to outperform the other algorithms tested for ancestry estimation, with an accuracy of 80.88%. Proximal femur dimensions can also be used to determine sex from fragmented remains. The Naïve Bayes algorithm achieved an accuracy of 91.2% and outperformed the other models tested. These findings reinforce the utility of proximal femur dimensions in sex estimation from fragmented remains, and may prove valuable in forensic cases where critical skeletal elements are absent. Furthermore, this study also aimed to determine the role of the proximal femur in estimating the stature-at-death of skeletal remains when complete long bones are not available. We used various machine learning algorithms to measure the proximal femur from radiographic images. The results showed that Gaussian process regression was the most effective method, with a mean error of 4.68 cm and a standard deviation of 3.93 cm. Finally, the study evaluated the usefulness of the proximal femur in the estimation of age by analyzing changes in bone density through radiographs. Femoral head, femoral neck, Ward’s triangle, and greater trochanter showed negative correlations with age-at-death, with females displaying stronger correlations than males. Additionally, machine learning models were evaluated for age estimation from radiographic images of proximal femora. The support vector machine performed the best for both sexes, with a root mean square error of 12.56 years and a correlation coefficient of 0.53. For females, the best-performing model was linear regression with femoral neck and Ward’s triangle as selected attributes, while for males, the best-performing model was linear regression. These results suggest that the proximal femur is useful in estimating biological profiles and can be applied in forensic contexts where critical skeletal elements are missing.en_US
dc.language.isoenen_US
dc.publisherChiang Mai : Graduate School, Chiang Mai Universityen_US
dc.titleBiological identification from proximal femur using artificial intelligence in a Thai populationen_US
dc.title.alternativeการระบุเอกลักษณ์บุคคลจากกระดูกต้นขาส่วนต้นโดยการใช้ปัญญาประดิษฐ์ในกลุ่มประชากรไทยen_US
dc.typeThesis
thailis.controlvocab.lcshFemur-
thailis.controlvocab.lcshFemur -- Radiography-
thailis.controlvocab.lcshIdentification-
thesis.degreedoctoralen_US
thesis.description.thaiAbstractวัตถุประสงค์ของวิทยานิพนธ์นี้คือการใช้กระดูกต้นขาส่วนต้นในการระบุเอกลักษณ์บุคคล ซึ่งกระดูกชิ้นนี้ประกอบเข้ากับเบ้าสะโพกของกระดูกเชิงกราน และมีลักษณะที่เฉพาะ ได้แก่ femoral head, fovea capitis, femoral neck, greater trochanter, lesser trochanter และ proximal shaft ซึ่งสามารถนำมาใช้ในการระบุเพศ อายุ ส่วนสูง และเชื้อชาติได้ ดังนั้น ในสถานการณ์ที่มีเฉพาะกระดูกต้นขาส่วนต้นเท่านั้นที่เป็นหลักฐาน การระบุเอกลักษณ์บุคคลจากกระดูกต้นขาส่วนต้นสามารถทำได้ด้วยวิธีการวัดกระดูกต้นขาส่วนต้น ภาพรังสีของกระดูกต้นขาส่วนต้นข้างซ้ายจำนวน 354 ร่าง ได้ถูกนำมาศึกษาและเปรียบเทียบการวัดจากภาพรังสีด้วยโปรแกรมประมวลผลภาพกับการวัดด้วยกระดูกจริง การวัดจากภาพรังสีแสดงให้เห็นว่ามีความใกล้เคียงกับค่าที่ได้จากการวัดกระดูกจริง ยกเว้นตัวแปรเส้นผ่าศูนย์กลาง femoral neck อย่างไรก็ตาม ระดับความใกล้เคียงของค่าที่วัดได้ด้วยวิธีการวัดทั้งสองนั้นไม่ได้อยู่ในค่าความคลาดเคลื่อนที่ยอมรับได้ ดังนั้นจึงไม่สามารถแนะนำวิธีการวัดจากภาพรังสีที่เสนอในวิทยานิพนธ์นี้แทนการวัดค่ากระดูกจริงได้ กระดูกต้นขาส่วนต้นสามารถนำมาใช้เพื่อการระบุเชื้อชาติได้ ในกรณีที่ไม่สามารถวิเคราะห์จากกะโหลกได้เพราะสูญหาย วิทยานิพนธ์นี้ศึกษาความแตกต่างของกระดูกต้นขาส่วนต้นในกลุ่มโครงกระดูกคนไทยกับคนต่างชาติ พบว่ามีแตกต่างอย่างมีนัยสำคัญ ยกเว้นตัวแปรเส้นผ่าศูนย์กลาง femoral neck และ ระยะห่างระหว่างปลายบนสุดของ femoral head กับขอบด้านข้างของพื้นผิวข้อต่อของ femoral head และจากการทดสอบด้วยปัญญาประดิษฐ์ พบว่า kernel logistic regression มีประสิทธิภาพดีกว่าอัลกอริทึมอื่น ๆ ในการประมาณเชื้อชาติ โดยมีความแม่นยำถึงร้อยละ 80.88 นอกจากนี้ยังสามารถใช้ภาพรังสีของกระดูกต้นขาส่วนต้นเพื่อระบุเพศและส่วนสูงได้ พบว่า อัลกอริทึม Naïve Bayes มีความแม่นยำถึงร้อยละ 91.2 และมีประสิทธิภาพดีกว่าอัลกอริทึมอื่น ๆ ที่ทดสอบ และการใช้อัลกอริทึม Gaussian process regression เป็นวิธีที่มีประสิทธิภาพมากที่สุดในการประมาณความสูงจากภาพรังสี โดยมีค่าเฉลี่ยความคลาดเคลื่อน 4.68 เซนติเมตร และส่วนเบี่ยงเบนมาตรฐาน 3.93 เซนติเมตร สุดท้ายนี้ การประมาณอายุจากกระดูกต้นขาส่วนต้นโดยการวิเคราะห์การเปลี่ยนแปลงของความหนาแน่นของกระดูกต้นขาส่วนต้นผ่านภาพถ่ายรังสี ซึ่ง femoral head, femoral neck, Ward’s triangle และ greater trochanter แสดงความสัมพันธ์เชิงลบกับอายุ โดยเพศหญิงแสดงความสัมพันธ์ที่ชัดเจนกว่าเพศชาย นอกจากนี้ อัลกอริทึม support vector machine ประมาณอายุได้ดีที่สุดสำหรับทั้งสองเพศ โดยมีค่าความคลาดเคลื่อน RMSE 12.56 ปี และค่าสัมประสิทธิ์สหสัมพันธ์เท่ากับ 0.53 สำหรับเพศหญิง อัลกอริทึมที่มีประสิทธิภาพดีที่สุดในการประมาณอายุคือ linear regression โดยมี femoral neck และ Ward’s triangle เป็นตัวแปรที่ให้ค่าดีที่สุด ในขณะที่สำหรับเพศชาย อัลกอริทึมที่มีประสิทธิภาพดีที่สุดคือ linear regression ผลการศึกษาเหล่านี้แสดงให้เห็นว่ากระดูกต้นขาส่วนต้นมีประโยชน์ในการระบุเอกลักษณ์บุคคลและสามารถนำไปใช้ในเชิงนิติมานุษยวิทยา ในกรณีที่กระดูกชิ้นสำคัญอื่น ๆสูญหายหรือเสียหายมากen_US
Appears in Collections:MED: Theses

Files in This Item:
File Description SizeFormat 
630751013-PATARA RATTANACHET.pdf6.23 MBAdobe PDFView/Open    Request a copy


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.