Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/78801
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | กิตติชัย วรรธนะจิตติกุล | - |
dc.contributor.author | ปฏิภาณ ปินตานา | en_US |
dc.date.accessioned | 2023-09-09T06:05:17Z | - |
dc.date.available | 2023-09-09T06:05:17Z | - |
dc.date.issued | 2023-05 | - |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/78801 | - |
dc.description.abstract | Age estimation is an important role in forensic science. It is suggested that radiographic images be utilized to estimate the age of unlive bodies from disasters or crimes. The body may lose vital organs or bones used to calculate age. As a result, estimated ages may be less accurate. Teeth, on the other hand, are organs in the body that rarely lose their information. Demirjian's approach is recommended for estimating age from dental radiography images. Dental age estimation requires a lot of time and knowledge to be done correctly. This study proposes using machine learning to overcome these problems. The model was created by combining aggregate channel features detector and deep learning algorithm. There are three processes. First, use an aggregate channel features detector to locate the lower left third molar. Then, the third molar stages were then evaluate using deep learning. Finally, using the method provided in the previous study, compute the age from the evaluated stages. The experimental results showed that the model can localize the lower left third molar in 99.5% of cases, evaluate the third molar with an accuracy of 83.0% and estimate age with a correlation with coefficient 𝜌 = 0.91 when compared to chronological age. Therefore, this developed model can be used to estimate the age from the dental panoramic films, which can reduce the evaluation time. | en_US |
dc.language.iso | other | en_US |
dc.publisher | เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ | en_US |
dc.title | เทคนิคอัตโนมัติเต็มรูปแบบในการประเมินระยะการพัฒนาของฟันกรามล่างซี่ที่สาม สำหรับการประมาณอายุโดยใช้ตัวตรวจจับคุณลักษณะแบบรวมช่องและเทคนิคการเรียนรู้เชิงลึก | en_US |
dc.title.alternative | Fully automated technique to assess the developmental stage of mandibular third molars for age estimation using aggregate channel features detector and deep learning technique | en_US |
dc.type | Thesis | |
thailis.controlvocab.thash | ฟันกราม | - |
thailis.controlvocab.thash | ฟัน | - |
thailis.controlvocab.thash | ฟัน -- การบันทึกภาพด้วยรังสี | - |
thesis.degree | master | en_US |
thesis.description.thaiAbstract | การประมาณอายุจากภาพถ่ายทางรังสีเป็นวิธีการหลักที่ใช้กันอย่างแพร่หลายในทางนิติวิทยาศาสตร์ มีความสะดวกสบายและสามารถปฏิบัติได้ง่ายกับบุคคลที่เสียชีวิตแล้ว ในการใช้ประมาณหาอายุของบุคคลที่ประสบเหตุภัยพิบัติต่างๆ หรือเหตุอาชญากรรม ร่างของผู้เสียชีวิตมักเกิดความเสียหายของอวัยวะได้ง่าย อาจทำให้ข้อมูลสำคัญที่ใช้ในการประมาณอายุเสียหายหรือสูญหาย อวัยวะที่พบว่ามีความเสียหายหรือสูญหายน้อยที่สุดคือ ซี่ฟันในช่องปาก ทำให้มีการศึกษาในการประมาณอายุโดยใช้ซี่ฟันในช่องปาก การศึกษาประมาณอายุที่ได้รับการยอมรับมากที่สุดคือวิธีการของ Demirjian ที่มีวิธีการประมาณอายุบนภาพถ่ายทางรังสีแบบพาโนรามิก แต่การประมาณอายุจากภาพถ่ายทางรังสีนั้นต้องอาศัยประสบการณ์ที่สะสมเป็นเวลานานในการอ่านภาพ สังเกต และประเมินระดับของฟัน เพื่อให้เกิดความแม่นยำของอายุทำถูกประมาณออกมา การศึกษานี้จึงได้มีแนวคิดในการประยุกต์ใช้ Machine Leaning เพื่อช่วยลดระยะเวลาในการประเมินระดับของซี่ฟันพร้อมทั้งประมาณอายุจากข้อมูลที่ได้รับ โดยการใช้การเรียนรู้เชิงลึกร่วมกับการตรวจจับคุณลักษณะแบบรวมช่อง เพื่อใช้ในการค้นหาฟันกรามซี่ที่สามบนแมนดิเบิล ทำการประเมินระดับโดยอิงจากวิธีการของ Demirjian และประมาณอายุด้วยสมการ ผลการศึกษาพบว่าการตรวจจับคุณลักษณะแบบรวมช่องสามารถพบฟันกรามซี่ที่สามบนแมนดิเบิลได้ 99.5% มีความแม่นยำของการประเมินระดับของฟันกรามซี่ที่สามด้วย ResNet50 อยู่ที่ 83.0% และอายุที่ประมาณได้มีความสัมพันธ์ด้วยต่าสัมประสิทธิ์ 𝜌 = 0.91 เมื่อเทียบกับอายุที่ถูกบันทึก ดังนั้นโมเดลที่ถูกออกแบบในการศึกษานี้จึงสามารถนำไปประยุกต์ใช้ในการประมาณอายุด้วยฟันกรามซี่ที่สามบริเวณแมนดิเบิล เพื่อลดระยะเวลาในการประเมินซี่ฟันได้ | en_US |
Appears in Collections: | AMS: Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
621131003-ปฏิภาณ ปินตานา.pdf | 2.68 MB | Adobe PDF | View/Open Request a copy |
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.