Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68452
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorXiaoqiang Wangen_US
dc.contributor.authorHongwei Liuen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2020-04-02T15:27:38Z-
dc.date.available2020-04-02T15:27:38Z-
dc.date.issued2020-04-01en_US
dc.identifier.issn0012365Xen_US
dc.identifier.other2-s2.0-85076711891en_US
dc.identifier.other10.1016/j.disc.2019.111780en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076711891&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68452-
dc.description.abstract© 2019 Elsevier B.V. Let p be a prime, s, m be positive integers, λ be a nonzero element of the finite field Fpm. The b-distance generalizes the Hamming distance (b=1), and the symbol-pair distance (b=2). While the Hamming and symbol-pair distances of all λ-constacyclic codes of length ps are completely determined, the general b-distance of such codes was left opened. In this paper, we provide a new technique to establish the b-distance of all λ-constacyclic codes of length ps, where 1≤b≤⌊ [Formula presented] ⌋. As an application, all MDS b-symbol constacyclic codes of length ps over Fpm are obtained.en_US
dc.subjectMathematicsen_US
dc.titleOn the b-distance of repeated-root constacyclic codes of prime power lengthsen_US
dc.typeJournalen_US
article.title.sourcetitleDiscrete Mathematicsen_US
article.volume343en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsHubei Universityen_US
article.stream.affiliationsHuazhong Normal Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.