Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParavee Maneejuken_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorDuentemduang Nachaingmaien_US
dc.description.abstract© Springer Nature Switzerland AG 2019. Threshold effect manifests itself in many situations where the relationship between independent variables and dependent variable changes abruptly signifying the shift into another state or regime. In this paper, we propose a nonlinear logistic kink regression model to deal with this complicated and nonlinear effect of input factors on binary choice dependent variable. The Bayesian approach is suggested for estimating the unknown parameters in the models. The simulation study is conducted to demonstrate the performance and accuracy of our estimation in the proposed model. Also, we compare the performance of Bayesian and the Maximum Likelihood estimators. This simulation study demonstrates that the Bayesian method works viably better when sample size is less than 500. The application of our methods with a birthweight data and risk factors associated with low infant birth weight reveals interesting insights.en_US
dc.subjectComputer Scienceen_US
dc.titleBayesian analysis of the logistic kink regression model using metropolis-hastings samplingen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume809en_US Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.