Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57516
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeerapong Suksumranen_US
dc.contributor.authorKeng Wiboontonen_US
dc.date.accessioned2018-09-05T03:44:49Z-
dc.date.available2018-09-05T03:44:49Z-
dc.date.issued2017-06-01en_US
dc.identifier.issn00019054en_US
dc.identifier.other2-s2.0-85006489520en_US
dc.identifier.other10.1007/s00010-016-0452-9en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006489520&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57516-
dc.description.abstract© 2016, Springer International Publishing. Möbius addition is defined on the complex open unit disk by (Formula presented.) and Möbius’s exponential equation takes the form L(a⊕Mb) = L(a) L(b) , where L is a complex-valued function defined on the complex unit disk. In the present article, we indicate how Möbius’s exponential equation is connected to Cauchy’s exponential equation. Möbius’s exponential equation arises when one determines the irreducible linear representations of the unit disk equipped with Möbius addition, considered as a nonassociative group-like structure. This suggests studying Schur’s lemma in a more general setting.en_US
dc.subjectMathematicsen_US
dc.titleMöbius’s functional equation and Schur’s lemma with applications to the complex unit disken_US
dc.typeJournalen_US
article.title.sourcetitleAequationes Mathematicaeen_US
article.volume91en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsChulalongkorn Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.