Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50104
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSorasak Leeratanavaleeen_US
dc.date.accessioned2018-09-04T04:24:22Z-
dc.date.available2018-09-04T04:24:22Z-
dc.date.issued2011-12-01en_US
dc.identifier.issn14505444en_US
dc.identifier.other2-s2.0-84856050289en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84856050289&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50104-
dc.description.abstractA generalized hypersubstitution of type τ = (2; 2) is a mapping σ which maps the binary operation symbols f and g to terms σ(f) and σ(g) which does not necessarily preserve arities. Any generalized hypersubstitution σ can be extended to a mapping σ on the set of all terms of type τ = (2; 2). A binary operation on H ypG(2; 2) the set of all generalized hypersubstitutions of type τ = (2; 2) can be defined by using this extension. The set HypG(2; 2) together with the identity hypersubstitution σ id which maps f to f(x 1; x 2) and maps g to g(x 1; x 2) forms a monoid. The concept of an idempotent element plays an important role in many branches of mathematics, for instance, in semigroup theory and semiring theory. In this paper we characterize the idempotent generalized hypersubstitutions of WP G(2, 2) ∪ {σ id} a submonoid of H ypG(2, 2).en_US
dc.subjectMathematicsen_US
dc.titleIdempotent elements of WP G(2, 2) ∪ {σ id}en_US
dc.typeJournalen_US
article.title.sourcetitleNovi Sad Journal of Mathematicsen_US
article.volume41en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.